#54: Kometen som kolliderade med Jupiter

Av Johan Warell

Sommaren 1994 gick många av oss i väntans tider – en komet var på väg att kollidera med Jupiter! Mycket var märkligt med denna komet: upptäckten, utseendet, banan, nedslaget, effekterna och det vi lärde oss av den.

Kometen hette Shoemaker-Levy 9 efter de amerikanska astronomerna Gene och Carolyn Shoemaker och David Levy. Men sitt amerikanska namn till trots var den ändå lite av en ”svensk komet”! Den sågs nämligen för första gången på en bild tagen 19 mars 1993 av Mats Lindgren, doktorand i planetgruppen vid Astronomiska observatoriet i Uppsala. Han sökte efter kometer i närheten av Jupiter med 1-meters Schmidtteleskopet på La Silla, objekt som kunde ha påverkats av jätteplanetens gravitation. Han markerade en underlig suddig fläck på plåten, men kontrollerade inte närmare dess identitet. På samma sätt agerade två andra observatörer med sina egna bilder – den japanske amatörastronomen Satoshi Osomo och den amerikanska astronomen Eleanor Helin. Alla tre såg de kometen på bilder flera dagar innan den upptäcktes officiellt.

Den fragmentiserade kometen fångad med hjälp av Hubble-teleskopet den 17 maj 1994. Foto: NASA.

Redan vid denna tidpunkt hade Shoemaker-Levys komet ett mycket märkligt utseende, utdragen som den var till ett diffust streck på grund av otaliga fragment utspridda längs dess bana. När positionsmätningar strömmade in till Minor Planet Center insåg man snart två extremt intressanta banegenskaper: dels hade kometen i mitten av april 1992 passerat mycket nära Jupiter och då sannolikt brutits sönder av tidvattenkrafter, dels skulle den i juli följande år passera mycket nära planeten igen. Snart stod det klart att kometen hade fångats in av Jupiter långt tidigare, innan 1960 och sannolikt redan någon gång kring 1920-talet, och den skulle komma att kollidera med Jupiter året därpå!

Den 16-21 juli 1994 störtade så kometens fragment ner i jätteplanetens atmosfär. Spekulationerna om vad som skulle hända vid nedslaget var vilda. Ingen kunde säkert veta vad som skulle ske när fragmenten förintades i atmosfären, men många trodde att åtminstone något skulle kunna gå att se i teleskopen, kanske också i amatörinstrument. För svenska observatörer skulle det dock bli svårt att studera Jupiter. Den stod nära horisonten på en ljus sommarhimmel och var synlig bara en kort stund efter solnedgången.

Flera svenska amatörer spanade under nedslagsveckan mot Jupiter. Ivrigast var Margareta Westlund och Karl-Gustav Andersson som tog sikte redan den 16 juli, strax efter nedslaget av fragment A. Denna kväll såg de inget ovanligt på Jupiters skiva, men den 18:e var det annorlunda: resultatet av nedslag G var tydligt synligt som en mörk och mycket stor fläck nära planetens sydpol.

Teckningar av Jupiters södra polarområde i samband med nedslagen av kometfragmenten. De mörka, runda fläckarna är spår efter de olika fragmenten. Teckningar av: a) Karl-Gustav Andersson, den 18 juli, b) Margareta Westlund, den 20 juli, c) Anders Wettergren, den 20 juli, d) Johan Warell, den 21 juli, e) Karl-Gustav Andersson, den 23 juli, f-i) Johan Warell, den 24, 25, 28 juli respektive den 16 augusti.

De följande veckorna följdes de nybildade fläckarna av flera svenska amatörer. Det oregelbundna pärlbandet av smutsfläckar utvecklades från dygn till dygn. Vissa fläckar varade länge, medan andra nedslag inte gav upphov till något synligt resultat alls. Vissa av fläckarna växte ihop, drogs ut av jetströmmarna och formade ett nytt, brett bälte, som under hösten blev allt blekare. De effekter som nedslagen hade i atmosfären visade sig vara korrelerade med fragmentens ljusstyrkor och relativa lägen i den sönderslitna kometsträngen, och tolkades som skillnader i densitet, struktur och sammansättning.

Bilderna ovan sammanfogade till ett så kallat driftdiagram. Diagrammet visar hur fragmenten slår ner ett efter ett varefter Jupiter roterar. Montage: Johan Warell.

Själv observerade jag fläckarna vid tjugo tillfällen från den 20 juli till den 28 augusti med 16 cm astrografen i Observatorieparken i Uppsala, och tog även ett antal foton. Det var spännande att följa tillkomsten av nya fläckar, deras inbördes storlekar, ljusstyrkor, rörelser och utveckling. Vädret samarbetade alltså, men några detaljer var inte möjliga att se på grund av den låga kontrasten och dåliga seeingen på Jupiters ringa höjd över horisonten. Jag beskrev resultaten av de observationer som samlades in av Svensk Amatörastronomisk Förenings solsystemssektion i Astronomisk Årsbok 1995 (Bokförlaget Inova), och en av mina teckningar rapporterades till British Astronomical Associations Jupiter Section och hamnade så småningom i boken The Great Comet Crash av John Spencer och Jacqueline Mitton (Cambridge University Press).

Shoemaker-Levys nedslag på Jupiter är ett av de mest spektakulära astronomiska fenomen som jag har upplevt. Ännu högre på listan kommer dock ett annat extraterrest atmosfärsfenomen som jag observerade med min 6 cm refraktor: Saturnusmånen Titans ockultation av stjärnan 28 Sagittari den 3 juli fem år tidigare, som var exakt central över Skandinavien och åtföljdes av en häpnadsväckande, blixtrande ljusflash. Detta är förstås en helt annan historia, men ett fenomen som nog är lika sällsynt som ett kometnedslag på Jupiter!

#53: Framgång i stratosfären

Av Mark Pearce

Inom experimentell verksamhet är misslyckanden en viktig del av arbetsprocessen. Det är misslyckade försök tillsammans med efterföljande analys och åtgärder som ger upphov till nya insikter och, kanske så småningom, även nya genombrott. I labbet går det enkelt att åtgärda problem som uppstår, varpå en mätning kan återupprepas. När man arbetar med ett teleskop som utför mätningar på 40 kilometers höjd i stratosfären är situationen däremot en helt annan. Vi som ägnar oss åt röntgenastrofysik har helt enkelt inget val. Våra teleskop kan bara utföra observationer från hög höjd – till exempel i stratosfären, hängande under en ballong som befinner sig ovanför cirka 99,5 % av den luftmassa som annars skulle absorbera röntgenstrålningen.

PoGO+ lyfter från Esrange den 12 juli 2016. Foto: Mark Pearce.

Teleskopet i fråga, Polarized Gamma-ray Observer, eller förkortat PoGO+, lättade från marken för tre år sedan, den 12:e juli 2016. Eftersom nyttolasten med teleskopet väger lika mycket som en stadsjeep krävs en enorm heliumballong (Globenarenan skulle kunna rymmas inuti) för att ge tillräcklig lyftkraft. Och nu, det där med misslyckanden – detta var fjärde gången gillt för röntgenteleskopet, efter ballonghaveri 2011, dåligt väder 2012, samt tekniska problem med en dator 2013. Förväntningarna var höga – efter flera år av frustration var det hög tid för framgång och lyckade mätningar. Under den veckolånga ballongflygningen från rymdbasen Esrange till Victoriaön i Kanada fungerade allting precis som det skulle. Äntligen!

PoGO+ är den största och mest komplicerade ballongburna vetenskapliga nyttolast som någonsin tillverkats i Sverige. Kungliga tekniska högskolan stod för själva teleskopet, kringutrustningen och den vetenskapliga planeringen. Teleskopets peksystem utvecklades av DST Control – ett litet högteknologiskt företag i Linköping. Stockholms universitet tog fram en stjärnkikare för att bestämma var på himlen teleskopet pekade. Sist men inte minst stod Swedish Space Corporation (före detta Rymdbolaget) för allt annat som behövs för att släppa upp och flyga ballongen, samt för att återföra nyttolasten, som efter avslutad flygning landar på marken med hjälp av en fallskärm.

Teleskopet har utvecklats specifikt för att kunna mäta polarisationen hos röntgenstrålning från kompakta och ljusstarka himlakroppar såsom Krabbpulsaren samt Cygnus X-1, ett svart hål i ett dubbelsystem. Att mäta polarisation innebär att bestämma riktningen på det elektriska fältet hos den elektromagnetiska svängningsrörelse som utgör röntgenstrålningen. Detta är en ny teknik inom röntgenastronomin. Hittills har de flesta röntgenobservationerna gått ut på att ta fram bilder och mäta tidsvariationer och energispektrum. Med hjälp av dessa tre pusselbitar har vi lärt oss enormt mycket sedan år 1962, då Riccardo Giaconni med kollegor uppmätte den första röntgensignalen med härkomst utanför vårt solsystem. Polarisationen hos röntgenstrålningen från himlakroppar kan ge ny information genom att avslöja vilka förhållanden som råder i omgivningar där strålningen skapas. Sådana egenskaper kan oftast inte bestämmas med vanliga observationstekniker, då objekten är för avlägsna för att avbildas i detalj.

Teamet bakom PoGO+ poserar framför gondolen. Från vänster Jan-Erik Strömberg (DST Control), Nagomi Uchida (Hiroshima University), Christian Lockowandt (SSC), H-G Florén (SU), Mark Pearce (KTH), Victor Mikhalev (KTH), Hiromitsu Takahashi (Hiroshima University), Maxime Chauvin (KTH), Mette Friis (KTH), Takafumi Kawano (Hiroshima University), Mózsi Kiss (KTH), Thedi Stana (KTH). Foto: Mark Pearce.

Så vad lärde vi oss av mätdata från PoGO+? För Krabbsystemet var det ny information om graden av ordning i de magnetiska fälten nära Krabbpulsaren. Det svarta hålet i Cygnus X-1 blir synligt i röntgen på grund av glöden från den ackretionsskiva som skapas när materia slits loss från en närliggande stjärna. Mätningarna från PoGO+ tyder på att de innersta delarna av ackretionsskivan (den så kallade koronan) är en utvidgad struktur alternativt ligger långt ifrån det svarta hålet. Koronan är ett mycket litet område, endast några tusen kilometer brett. På det avstånd som Cygnus X-1 befinner sig motsvarar detta en vinkel mindre än 30 nano-bågsekunder! 

PoGO+ går till väders. Film av Swedish Space Corporation.

Under det kommande decenniet kommer polarisationsmätningar i röntgenområdet etablera sig som ett vanligt verktyg inom astrofysiken. Nya ballongburna teleskop kommer att fortsätta bidra till fältets utveckling, till exempel den nyttolast med mycket bättre känslighet än PoGO+ som vi nu planerar i samarbete med kollegor från USA och Japan. Förhoppningsvis blir denna del av vår resa rakare än den som vi precis har lagt bakom oss.

#51: Knut Lundmark och solförmörkelserna

Av Ulf R. Johansson

Knut Lundmark, astronomiprofessorn i Lund, var en pionjär på många plan (galaxvärlden, universums expansion, mörk materia, supernovor med mera) – inklusive i det som vi i dag kallar outreach, att forskare populariserar sin vetenskap. Han var även pionjär på ett annat vis, genom sina flygobservationer av de totala solförmörkelserna 1945 och 1954. Solförmörkelser kom på ett märkligt sätt att rama in Lundmarks astronomiska liv. Redan som 25-åring var han på plats 1914 i Österforse, Ångermanland för att som assistent hjälpa sin välgörare Östen Bergstrand, professor i Uppsala.

Vetenskapsakademiens expedition till Ångermanland vid solförmörkelsen 1914. Lundmark står längst till vänster. Intill honom står Andrea Lindstedt och Karl Bohlin. Längst till höger står Östen Bergstrand. Foto: Östen Bergstrands arkiv, Uppsala universitetsbibliotek.

Att Lundmark senare i livet kom att fascineras av dessa himlafenomen var inte så konstigt: Som populärvetenskapare insåg han snart att solförmörkelser utgjorde en effektiv pedagogisk ingång till ett vidgat astronomiskt intresse hos den bildade allmänheten. Båda de totala solförmörkelserna 1945 och 1954 – bägge synliga i Sverige – lockade fram populärvetaren Lundmark, bevisat av de bägge skrifterna Solförmörkelser förr och nu (1945) och Dagmörkret över Sydsverige den 30 juni 1954 (1954) – den senare boken kom ut i två upplagor och såldes i drygt 11 000 ex, en bästsäljare för sin tid.

Solförmörkelsen 1954 var en stor begivenhet och den följdes av tusentals svenskar, många av dem med hjälp av specialtillverkade förmörkelseglasögon. Foto: Bohusläns museum.

I sin bok 1945 tvekar för övrigt inte Lundmark att utpeka Uppsala-expeditionen till Österforse 1914 som den främsta av de fyra svenska expeditionerna. Flera fotografier togs och Östen Bergstrand kunde så småningom, tack vare dessa bilder, famna solkoronans form i rymden. I boken citeras några dagboksanteckningar ”av en deltagare i den Bergstrandska expeditionen” – det kan inte vara någon annan än Lundmark själv som fört pennan.

Solförmörkelsen 30 juni 1954 följde Lundmark själv från ett flygplan tillsammans med sin nära förtrogne Martin Johnson (mer om honom i ett senare inlägg). De bägge följde förmörkelseförloppet från en B3:a, utgående från flygflottiljen i Halmstad. Flygspaningen, om uttrycket tillåts, avrapporterade Lundmark i årsboken Cassiopeia, där han påpekar att projektet kunde genomföras tack vare regeringens och flygvapnets tillmötesgående. Under drygt tre timmar följdes centrallinjen från Jönköping till Oskarshamn och ut över Öland. Marschhöjden låg på 1800 meter, klart över de moln som omöjliggjorde många svenskars intryck. De märkte att det blev mörkt och kallare – men såg ingenting. I skånska Höör kunde jag själv som smågrabb se den partiella delen genom molngliporna.

En division flygande tunnan uppsända från F6 i Karlsborg passerar framför solen vid totaliteten under förmörkelsen 1954. Foto: Karlsborgs fästningsmuseum.

Lundmark noterar förvisso intressanta skillnader mellan koronas utseende 1945 och 1954, men så mycket vetenskap blev det inte av detta. Lundmark berättar i stället hur djupt påverkad han blev av upplevelsen, särskilt den vackra diamantringsfenomenet som förde professorns tankar till skaparorden: – Varde ljus! Han skriver: ”[…] egendomligt nog har man någon gång klandrat mig för mina utgjutelser över de skönhetssyner jag erfarit i samband med mina solförmörkelseiakttagelser. Hur man nu skall vara inrättad för att klandra någon annan människas skönhetsintryck, det begriper jag ej, och inte önskar jag heller forska i sådana organiska företeelsers invärtes byggnad.”

#49: CLEAN och jakten på skärpa i radioteleskopens bilder

Av Jan Högbom

Vi radioastronomer studerar strålningen, ”radiobruset”, därutifrån på våglängder som är miljoner gånger större än ljusets. Den maximala upplösningen, skärpan, i de radiobilder vi kan få fram beror, liksom för vanliga optiska teleskop, på hur stor teleskopöppningen är uttryckt i våglängder. För att observera detaljer i radiobrusets fördelning över himlen lika skarpt som ögat ser med sin pupill på ett par mm, skulle vi alltså behöva en antenn, till exempel en parabol, med en diameter på ett par miljoner millimeter – det vill säga ett par kilometer!

Radioastronomer hade tidigt förstått att teorin för hur ett teleskop fungerar erbjöd en möjlighet att komma till samma resultat genom att kombinera många observationer tagna med mindre antenner hopkopplade parvis till interferometrar. Var det dags att lägga ut rader av mindre antenner över sjöar, berg och hav, koppla ihop dem till interferometrar, och räkna fram radiobilder med en skärpa motsvarande paraboler stora som kontinenter eller som hela jordklotet? Inte så realistiskt kanske, men i vissa fall kan det räcka med att parvis koppla i hop antenner som redan finns på observatorier runt om i världen. I alla fall behövdes en metod, en algoritm, för att kombinera observationerna så att dessa högupplösta radiobilder skulle kunna skapas. CLEAN är en sådan metod.

De tre radioteleskop som författaren använde vid Green Bank i USA. Foto: NSF/AUI.

Historien om CLEAN började 1968 när jag fick observationstid med ett speciellt instrument vid radioobservatoriet vid Green Bank i USA. Jag arbetade vid den tiden i Holland, i en internationell grupp ingenjörer, tekniker och astronomer för att där bygga ett stort radioteleskop. Men de tre antennerna i Green Bank var något helt annat. De kunde kombineras två och två som interferometrar.  Jag var intresserad av antennteori och ville försöka skapa detaljerade radiobilder av en del kända radiokällor genom att använda observationer med dessa interferometrar.

När observationerna var gjorda for jag tillbaka till Holland med data i bagaget. De bilder jag kunde räkna fram var oanvändbara, fulla med irrelevanta detaljer, krafs, som maskerade nästan allt som var intressant. Egentligen var det inte förvånande. Enligt strikt teori för hur bilder genereras skulle jag ha behövt mycket fler mätningar än de jag kostat på mig. Men ändå… Jag visste saker som den strikta teorin inte kände till – till exempel att radiokällor är positiva. Det finns inga negativa radiokällor! Och att de radiokällor som jag hade observerat var ganska små och rätt ensamma i sin omedelbara omgivning. Kunde sådan a priori information användas för att komplettera de annars otillräckliga observationerna?

Jag försökte några sätt att komma runt problemen. Till slut kom jag till en metod, en algoritm, som verkade fungera, en metod som senare döptes med det talande namnet CLEAN. Metoden ”tvättade” bort det störande krafset från mina första bilder, därav de termer som senare har kommit i bruk: De första oanvändbara bilderna kallades ”dirty maps”. Efter att ha behandlats med CLEAN-algoritmen blev de uppgraderade till ”clean maps”.

Ett sätt att beskriva en ”dirty map” är att radiokällan observerats, inte med ett perfekt teleskop, utan med ett ofullständigt teleskop som gör att varje detalj på radiokällan blir avbildad tillsammans med ett mycket störande mönster av sidlober. Detta är en direkt konsekvens av frånvaron av de observationer som aldrig utfördes. CLEAN-algoritmen lyfter ut detalj efter detalj med tillhörande störande mönster från bilden, tar bort störningsmönstren och sätter sedan tillbaka de nu ”tvättade” detaljerna på bilden.

Naturligtvis måste man alltid ha tillräckligt många observationer för att detta skall fungera. CLEAN-algoritmen hamnar snabbt i problem om radiokällan i verkligheten är större och mer komplicerad än man trott. Då hjälper bara fler observationer!

CLEAN-algoritmen är numera ofta en integrerad del i datorbehandlingen av observationer med moderna radioteleskop. Denna bild, som nyligen väckt stor uppståndelse, visar det gigantiska svarta hålet i centrum av galaxen M87, och för att skapa den användes bland annat CLEAN. Foto: Event Horizon Telescope Collaboration.

#48: Svante Arrhenius och livets utbredning genom världsrymden

Av David Dunér

Få intryck är så upplyftande, skrev Svante Arrhenius i Världarnas utveckling (1906), som då man en molnfri natt betraktar himlavalvet med dess tusenden av stjärnor. ”Då man sänder tanken bort till dessa i det oändliga fjärran glittrande ljus, kan man knappast undgå att fråga sig, om i deras omgifning finnas planeter liknande vår, som äro hemvist för organiskt lif.” På samma sätt som en ö i tropikerna med en underbar mångfald av liv, till skillnad från en ödslig ö i de arktiska trakterna, utövar de främmande världarna en helt annan dragningskraft på vår tanke om de har liv än om de bara är döda massor som svävar omkring i rymden.

Svante Arrhenius. Tekniska Museets ämbetsarkiv, okänd fotograf.

Denna fråga om livets utbredning genom världsrymden upptog fysikern och kemisten Svante Arrhenius (1859–1927) i flera populärvetenskapliga böcker, men också i vetenskapliga uppsatser. Arrhenius som beskrivits som den fysikaliska kemins grundare, tillika nobelpristagare i kemi 1903, var också en av grundarna av Svenska astronomiska sällskapet 1919 där han intog posten som vice ordförande. Men hans gärning tränger också in i vår tid. Han var den förste som beskrev växthuseffekten (1896), det vill säga hur koldioxiden i atmosfären stänger inne värmestrålningen. Tanken om atmosfärens betydelse för liv blir också en av huvudfrågorna för hans spekulationer rörande liv på andra planeter i vårt solsystem.

I sin bok Stjärnornas öden (1915) framlägger Arrhenius sin övertygelse att Venus har liv, en fuktig, ångande värld med frodig vegetation och primitivt liv. Han antar att medeltemperaturen på Venus var 47 grader och fuktigheten ”tre gånger så hög som i Kongo”. Utan tvivel täcktes därför, säger han, större delen av dess yta av sumpmarker. Där fanns troligen lägre stående former av liv, särskilt växter. Så småningom kommer emellertid temperaturen att sjunka, ”de täta molnen och dunklet skingras”, och när livet har slocknat på jorden, kommer högre växt- och djurformer där framträda.

Venus yta består enligt Arrhenius av sumpmarker påminnande om förhållanden vid tiden för stenkolslagrens bildande på jorden. Bild: Naracosaurus.

Föreställningen om kanaler på Mars tror Arrhenius inte på. Knappast någon annan planet i vårt solsystem skulle kunna vara hemvist för högre varelser än just vår jord. Men det är högst troligt, tillägger han, att det bland de otaliga solar som sänder sitt ljus till oss kretsar mörka kroppar som bebos av intelligenta varelser.

En av Arrhenius mest högtflygande tankar om liv i rymden, var den så kallade panspermiehypotesen, tanken att livet kunde spridas genom rymden likt frön i vinden. Tanken hade föresvävat redan Anaxagoras på 400-talet f.Kr. Kemisten Jöns Jacob Berzelius hade visat att meteoriter kunde innehålla organiskt material. På 1860-talet spekulerade Hermann Richter kring tanken att meteoriter skulle kunna bära med sig spår av utomjordiskt liv. År 1903 publicerade Arrhenius en artikel i den vetenskapliga tidskriften Die Umschau, där han förklarade hur mikroskopiskt liv kan spridas i rymden genom strålningstrycket från stjärnorna. Några år senare tar han upp frågan i Världarnas utveckling om hur livsfrön irrar omkring i världsalltets rymder, träffar planeter och när betingelserna är de rätta fyller dess yta med liv.

Schiaparellis karta över Marsytan (1888). Arrhenius förhåller sig kritisk till idén om kanaler på Mars, och menar att det är ”nog sangviniskt, att af de s. k. kanalernas förekomst sluta till att intelligenta väsen finnas på Mars. Många antaga ’kanalerna’ bero på synvillor.” Arrhenius, Världarnas utveckling (1906).

Arrhenius hypotes går ut på att det finns levande organismer, så små att strålningstrycket från solen kan driva ut dem i rymden. På 9000 år skulle de kunna nå vårt närmaste solsystem Alfa Centauri. Frön av lägre organismer strös beständigt ut från jorden och andra bebodda planeter. De flesta går ”döden till mötes i den kalla, oändliga, världsrymden”, men ett litet antal faller ned på himlakroppar med gynnsamma förhållanden och ger där upphov till en mångfald av levande varelser. Livet på andra bebodda världar skulle alltså sannolikt vara besläktad med de former som vi finner på jorden.

Diskussionen om att livet har spridits genom rymden har levt vidare alltsedan Arrhenius. Debatter har blossat upp i tolkningen av bland annat Murchinsonmeteoriten och meteoriten Allan Hills 84001. På senare tid har man också experimentellt visat att mikrobiskt liv, även så kallade björndjur, kan färdas och överleva i rymden. Kanske svävar Arrhenius livsfrön fortfarande där ute i världsrymden?

#47: Åke Wallenquist (1904-1994)

Av Gunnar Welin

Åke Wallenquist växte upp i Västervik, där han redan som fjortonåring byggde ett eget teleskop. Han kom tidigt i kontakt med det nystartade Svenska astronomiska sällskapet, och bidrog redan i dess andra årgång till sällskapets Populär Astronomisk Tidskrift med en redogörelse för ett magnifikt norrsken som varit synligt i Västervik i mars 1920.

Åke Wallenquist fotograferad vid IAU:s generalförsamling i Zürich 1948. Foto:
University of Chicago Photographic Archive, apf6-04375, Special Collections Research Center, University of Chicago Library.

År 1922 började Wallenquist studera vid Uppsala universitet, och var ett par år senare med och startade Astronomiska föreningen i Uppsala. Studierna gick raskt undan och 1927 blev han fil. lic. i astronomi. Året efter kom han till det nederländska Bosschaobservatoriet i Lembang på Java (nuvarande Indonesien var då kolonin Nederländska Ostindien), där han blev kvar till 1935 och under tiden träffade sin blivande hustru Phine. Han sägs ha varit den första svenska astronom som observerat från södra halvklotet.

Från början var hans huvudintresse dubbelstjärnor, men det utvidgades till öppna stjärnhopar, och 1931 disputerade han i Uppsala på en avhandling om Messier 7. Senare i livet kom han att bland annat att ägna sig åt den stora galaxhopen i Berenikes hår, Comahopen.

Men Åke Wallenquists intressen spände över i stort sett alla astronomins områden. Bland solsystemets medlemmar var han särskilt intresserad av planeten Mars. Han var också med om fem vetenskapliga solförmörkelseexpeditioner, i Sverige 1927, 1945 och 1954, på Sumatra 1929 och i Brasilien 1947. Flera andra observatorier världen över tog också emot honom som observatör.

På två helt olika vis blev Åke Wallenquist av stor betydelse för svensk astronomi. Redan som skolpojke kontaktade han konstnären och privatastronomen Nils Tamm på Kvistaberg för goda råd inför ett eget teleskopbygge. De kontakterna fortsatte och ledde till en långvarig vänskap med den nästan 30 år äldre Tamm. När Tamm funderade på hur han bäst skulle kunna använda sina resurser för att gynna den svenska astronomin kom Åke Wallenquist med idén att donera hans privatobservatorium med tillhörande herrgård till Uppsala universitet. Så skedde, tillsammans med en bra summa pengar till bygget av ett större teleskop – som senare fördubblades genom ett statligt anslag. Staten bidrog även med en tjänst som observatorieföreståndare, naturligtvis för Åke Wallenquist, som innehade tjänsten från 1959 till sin pensionering 1970; observator vid Uppsalaobservatoriet blev han 1948.

Det stora teleskopet, Kvistabergsschmidten, var under planeringsstadiet världens näst största i sitt slag, men innan det stod färdigt 1963 hade ytterligare ett par något större kommit till. Tyvärr hann Nils Tamm aldrig uppleva dess fullbordan; han avled 1957. Tillsammans med ett mindre teleskop, det fotoelektriska T40, stod Kvistabergs observatorium för mycket av observationsarbetet vid Uppsalaobservatoriet, till dess den växande bebyggelsen i trakten och söder om Mälaren gjorde betingelserna mindre gynnsamma.

Wallenquist tillsammans med Ulf R. Johansson och Ants Sander vid Schmidt-teleskopet på Kvistaberg. Foto: Bertil Pettersson.

Åke Wallenquist var också flitig skribent i populär astronomi. Han skrev många böcker och tidningsartiklar i skiftande astronomiska ämnen, bland annat ”Under strecket” i Svenska Dagbladet. Den första boken skrevs på holländska, men kom 1938 i svensk version, På väg mot oändligheten. Många blivande astronomer hämtade inspiration ur hans böcker, skrivna på en tämligen torr och saklig prosa, men samtidigt med en känsla av att detta var viktiga och intressanta kunskaper. Det var nog främst den delen som ledde till att han 1960 tilldelades professors namn.

#46: Arton och en halv minut levande astronomihistoria

En fantastisk svartvit film från mitten av 1930-talet finns nu tillgänglig på nätet. Den visar astronomer och teleskop vid Stockholms observatorium i Saltsjöbaden. Exakt när den tillkommit eller vem som filmat vet vi inte, men Per-Olof Lindblad berättar att en konkursad fotofirma tog kontakt med honom under 1960-talet och berättade om filmen. Per-Olof själv agerade sedan berättarröst och talade in det ljudspår vi nu kan höra på den digitaliserade versionen som finns tillgänglig på hemsidan till Stockholms universitets Institution för astronomi.

Sten Asklöf vid okularet på refraktorn vid observatoriet i Saltsjöbaden. Klicka här för att titta på filmen.

Ingen kunde vara en bättre ciceron till denna astronomihistoriska sensation än Per-Olof Lindblad. Som son till Saltsjöbadsobservatoriets förste föreståndare, Bertil Lindblad, flyttade Per-Olof själv som treåring till observatoriet i samband med invigningen 1931 – och bor fortfarande kvar! Efter en egen lång astronomikarriär syns professor emeritus P-O fortfarande till då och då på den ’nya’ institutionen vid Albanova. Vem annars skulle kunna guida oss bland kryssfotometrar, gärtnerapparater, ledmikroskop, handtastar och schiltfotometrar? Själv hade jag inte hört talas om hälften av dessa teknikhistoriska underverk, och fick skicka denna text till Per-Olof för att försäkra mig om att jag hört rätt på filmen.

Filmen visar även några av Sveriges kändisastronomer. På den tiden huserade nämligen exempelvis Bertil Lindblad, Gunnar Malmquist, Jöran Ramberg och Yngve Öhman i Saltsjöbaden, och de ses här observera med refraktorn, spegelteleskopet och astrografen. Det handlar alltså om ett stycke levande astronomihistoria, och en unik beskrivning av hur man faktiskt handhade de gamla teleskopen och apparaterna. Även tidstypiska vyer över Saltsjöbaden och en titt in i biblioteket erbjuds. Titta och njut!

#45: Venuspassagerna 2004 och 2012

Av Johan Warell

Som ung och nybakad amatörastronom var det några astronomiska händelser som jag särskilt såg fram emot. Vissa skulle ske ganska snart och ge helt nya bidrag till vår världsbild, andra skulle ske så långt in i framtiden att de såg ut att vara nästan omöjliga att nå.

Till de förra hörde återkomsten av Halleys komet 1986, Voyager 2:s förbipassager av tvillingplaneterna Uranus 1986 och Neptunus 1989, jätteteleskopet VLT:s invigning 1998 samt den totala solförmörkelsen i Finland 1990. Till de senare hörde samma tvillingplaneters klättring upp mot norra stjärnhimlen för att bli någorlunda observerbara från våra breddgrader, vilket sker först nu – men framför allt Venuspassagerna den 8 juni 2004 och den 6 juni 2012.

Vid Tycho Brahe-observatoriet i Oxie samlades närmare 300 intresserade för att observera Venuspassagen 2012. Arrangemanget bjöd på strålande förhållanden. Foto: Eva Dagnegård.

Venuspassager, och för den delen även Merkuriuspassager, är ju solförmörkelser i miniatyr. Men liknelsen är lite vacklande eftersom en oinvigd betraktare just inte märker att något händer. Att tala om passagerna i termer av ockultationer ger en sannare bild, för det är just vad det är frågan om – en kropp passerar framför en annan och skymmer dess ljus. Månens ockultationer av stjärnor har många observerat, och de är spännande skådespel i sin majestätiska tysthet. Bara en handfull av oss i Sverige har dock observerat en asteroidockultation, då en småplanet passerar framför en stjärna och under några korta sekunder skymmer dess ljus – en mäktig påminnelse om att saker sker snabbt och plötsligt där ute i rymden.

Venuspassager är på många sätt något helt annat än ”vanliga” ockultationer. Under några timmars tid sveper planetens kolsvarta och perfekt rundade skiva graciöst fram över solens skiva och ger gott om tid för studier. Rent observationellt är större delen av fenomenet inte särskilt spännande, men det är ändå en pirrande känsla att följa planeten när den glider in på och ut från solskivan.

Jag hade den stora lyckan att kunna observera båda de senaste Venuspassagerna. Mängder av visningar, föredrag och aktiviteter anordnades för allmänheten runtom i landet och vi möttes åtminstone under 2012 av bra sommarväder över Sydsverige som gjorde observationer möjliga på många platser. Jag är säker på att många som såg någon av dessa passager bär med sig den sällsamma upplevelsen som ett tydligt minne, just eftersom fenomenet var så ovanligt och den visuella effekten så stark. Redan med ett solfilter framför blotta ögat var Venusskivan en märklig, malplacerad och kolsvart smutsfläck på solytan. Den så kallade svarta droppen och himlens skenbara intrång på solskivan vid andra och tredje kontakt var tydliga. (Mer om droppen står att läsa på s. 38 i detta nummer av Populär astronomi.)

Den svarta droppens och Venuspassagernas sällsamhet gör det omöjligt att inte reflektera över fenomenets historiska betydelse för vår världsbild och för statsmakternas kamp om vetenskaplig triumf och dominans. Målet att med Venuspassagerna som verktyg uppmäta det absoluta avståndet till solen, och därmed solsystemets storlek, var den ledande orsaken till kolonialmakternas stora intresse för passagerna under 1700- och 1800-talen. Den franske astronomen Le Gentils osjälviska uppoffringar och vedermödor i Ostasien för att med oförrättat ärende observera Venuspassagerna 1761 och 1769 ter sig närmast obegripliga i vår tid. Numera tar vi oss snabbt och lätt fram över världen, ständigt överösta av information från alla dess hörn och med instrument för noggrann tidmätning i var mans hand.

Pehr Wilhelm Wargentins observationer av Venuspassagen den 3 juni 1769. Per Wargentins arkiv, Centrum för Vetenskapshistoria, Kungl. Vetenskapsakademien. Foto: Jonas Häggblom.

Svenska astronomer bidrog också till Venuspassagernas historia. Passagerna 1761 och 1769 observerades från många platser i landet, bland annat Torneå, Härnösand, Uppsala, Lund och Stockholm, och rapporterades till The Royal Society i London av Pehr Wilhelm Wargentin, Vetenskapsakademiens ständige sekreterare. Wargentin gav också den första korrekta förklaringen till den svarta droppen. Passagen 1769 observerades av botanikern Daniel Solander som medföljde James Cooks resa till Haiti. Han kunde konstatera att allt för många sekunder skiljde mellan hans egna och andra observatörers tidsbestämningar för att de skulle vara användbara för att beräkna längden på den astronomiska enheten.

Den svarta droppens oberäkneliga varaktighet gör det nämligen omöjligt att bestämma passagens början och slut med den sekundprecision som är nödvändig för att kunna bestämma avståndet till solen. Den dåliga optiska kvaliteten på instrumenten i kombination med dålig seeing på grund av den uppvärmda dagsluften gjorde uppdraget i princip omöjligt. Faktum är att bättre resultat nåddes med parallaxobservationer av Mars och närpasserande småplaneter. Det var först år 1901 som den astronomiska enheten kunde bestämmas med hög noggrannhet, och då på grundval av observationer av småplaneten Eros.

Venus på väg att lämna solskivan under passagen den 6 juni 2012. Precis när planeten tangerar solkanten (tredje kontakt) skapas den så kallade svarta droppen. Detta är en optisk effekt som tycks töja ut planetskivan till en droppe. Foto: Johan Warell.
Egressen, det vill säga utträdet, under Venuspassagen 8 juni 2004 filmad genom den svenska solteleskopet på La Palma. Skeendet visas 12 gånger fortare än i verkligheten. Den tunna linjen runt planeten är i själva verket dess atmosfär. Film: Kungl. Vetenskapsakademien/Dan Kiselman.

Avslutningsvis kan vi konstatera att det är långt till nästa Venuspassage, som inte sker förrän 2117. Men Merkurius rör sig framför solens skiva sker redan den 11 november i år – alldeles oavsett om vädret tillåter observationer eller inte. Njut av händelsen och låt dig dras med av historiens vingslag!

#43: Aina Elvius upptäcker polariserat ljus från galaxer

Aina Elvius som gick bort den 23 maj i år vid en ålder av 101 år var Sveriges första kvinnliga professor i astronomi och Svenska astronomiska sällskapets ordförande 1986-1990. Under 40 år (1951-1991) var hon yrkesverksam, främst inom området polarimetri av galaxer och aktiva galaxkärnor. I detta inlägg berättas om bakgrunden till Elvius forskningsområde, liksom om hennes insatser.

Av Göran Östlin

Ljus från himlakroppar och andra källor, karakteriseras av dess intensitet, våglängd och polarisation. De första två egenskaperna är tämligen välkända, ljus kan vara olika starkt och ha olika färg, medan ljusets polarisation inte är lika uppenbar. Vad är då polarisation? Det ljus vi kan se från en källa är en elektromagnetisk vågrörelse som färdas mot oss, och som beskrivs av dess frekvens (antal svängningar per sekund) och våglängd (avståndet mellan två vågtoppar). Men ljuset svänger även i riktningen vinkelrätt mot färdlinjen. Oftast är dessa svängningar slumpmässiga, men om dessa svängningar sker företrädesvis i en speciell riktning sägs ljuset vara polariserat.

Aina Elvius vid stora refraktorn på Stockholms observatorium i Saltsjöbaden 1950. Tuben som hon monterar på teleskopet är den polarigraf som hon använde för sin forskning och som nämns i texten. Foto: Dagens Nyheter/ TT.

Vissa optiska material släpper igenom ljus med företrädesvis en polarisationsriktning. Genom att infoga en sådan komponent i strålgången i ett optiskt teleskop, och genom att rotera denna komponent mellan successiva observationer kan man mäta vilken andel av det ljus man ser från en himlakropp som är polariserat.  Under tidigt 1900-tal gjordes polarimetriska observationer av ett fåtal galaxer, utan att ge några tydliga resultat. År 1936 upptäcktes att reflektionsnebulosor (ett exempel omger den unga stjärnhopen Plejaderna) uppvisade polariserat ljus. Den svenska astronomen Yngve Öhman konstruerade en ’polarigraf’  med vilken man kunde mäta polarisationen hos himlakroppar. Ett av de första studieobjekten var Andromedagalaxen (M31), och 1942 hittade Öhman polarisation i några av de stoftstråk som syns i galaxens skiva. År 1949 publicerades observationer (av Hall och Hiltner) som påvisade polarisation i ljuset från stjärnor i Vintergatan och 1951 fick dessa observationer sin teoretiska förklaring (av Davies och Greenstein) i form av icke-sfäriska stoftkorn i det interstellära mediet, vilka upplinjerar sig med det lokala magnetfältet i Vintergatan, med följd att ljus av olika polarisation absorberas olika mycket. Ljus kan även polariseras när det reflekteras.

Stjärnhopen Plejaderna med omgivande reflektionsnebulosor. Ljuset från de unga stjärnorna polariseras av stoftkort i nebulosorna, vilket anges av strecken i bilden. Foto: Aina Elvius, “Mitt liv bland galaxer”, Astronomisk tidskrift, nr 3, 1990.

År 1948 påbörjade Aina Elvius sina polarimetriska studier av galaxer med hjälp av Öhmans polarigraf, och redan 1951 publicerade hon sin första studie av polarisation i spiralgalaxen M63. Hon blev senare inbjuden av John Scotville Hall att arbeta vid Lowell-observatoriet i Arizona, USA, där hon gjorde en mängd observationer av polarisationen av ljus från galaxer och från nebulosor i Vintergatan. Hon föreslog bland annat att polarisationen som observerades i en annan spiralgalax, NGC 7331, kunde förklaras av Davies och Greensteins teori – vid den tiden rådde ingen konsensus om hur man skulle tolka resultaten av polarisationsmätningar från galaxer. Parallellt med optiska studier utvecklades radioastronomin starkt och etablerade synen på polarisation av radiovågor som en konsekvens av snabba elektroner som rör sig i magnetiska fält (den så kallade synkrotronprocessen, Alfvén & Herlofsson, 1950).

Bildmontage av Centaurus A som visar strålar av kall (orange) och het (blått) gas som skickas ut från det svarta hålet i galaxens centrum, tillsammans med synligt ljus som visar galaxens form och det kraftiga stoftstråket. Foto: ESO/WFI (Optiskt); MPIfR/ESO/APEX/A.Weiss et al. (Submillimeter); NASA/CXC/CfA/R.Kraft et al. (Röntgen).

Aina Elvius gjorde tillsammans med John Hall mätningar av polarisationen i synligt ljus från flera andra galaxer, och fann 1964 stark polarisation bland annat i de oregelbundna galaxerna M82 och Centaurus A (NGC 5128). Den senare kännetecknas av en rund form med ett brett mörkt band som sträcker över hela den optiska skivan och den hyser ett gigantiskt svart hål i sitt centrum, varifrån strålar av gas skickas ut (ungefär vinkelrätt mot det kraftiga stoftstråket) vilka kan observeras i radioområdet, men det visste man inte då (se figur). Att radiostrålningen från Centaurus A var polariserad på grund av synkrotronprocessen hade då nyligen upptäckts, men det var inte förrän senare och med hjälp av radiointerferometri som man kunde observera jetstrålarna och deras riktning och därför var det först överraskande att polarisationsriktningen mellan radio och synligt ljus skilde sig åt. Aina fann några år senare polarisation också från ’kvasi-stellära’ radio källor (kvasarer), och under mer än tre decennier var hon en pionjär inom studiet av polarisation av synligt ljus från galaxer, aktiva galaxkärnor och nebulosor i Vintergatan.

De vita och svarta strecken visar riktningen och styrkan (längden på strecken) av optisk polarisation i Centaurus A. Foto: Aina Elvius & John S. Hall 1964, Lowell Observatory Bulletin, 6, 123.

* * *

Aina Elvius berättade själv om sin astronomiska gärning i en längre artikel i Astronomisk tidskrift från 1990. Artikeln finns att läsa här.

#41 Bengt Edlén

Av Nils Ryde

Bengt Edlén var en framgångsrik atomspektroskopist, som löste en viktig astronomisk fråga under tidigt 1940-tal. Han föddes 1906 i Östergötland, tog studenten i Norrköping, studerade vid Uppsala universitet, var doktorand hos Manne Siegbahn och blev docent och fil. dr 1934. Han var också lärjunge till The Svedberg i Uppsala. Sin första insats på forskarbanan gjorde Edlén som nybliven assistent på fysiska institutionen i Uppsala under ett sommarlov, då han letade reda på alla prov på grundämnen som fanns på institutionen och gjorde spektroskopiska studier på dem. Han utnämndes till professor i fysik vid Lunds universitet 1944, där han byggde vidare på institutionens spektroskopiforskning.

Ur Bengt Edlén “Om solkoronans spektrum och identifieringen av koronalinjerna”, Populär Astronomisk Tidskrift, vol. 22, 1941.

Edlén löste den så kallade koronagåtan i en artikel publicerad den 12 mars 1941. Detta visar hur fysiken och astronomin framgångsrikt kan växelverka och är beroende av varandra. Oidentifierade spektrallinjer från ultraviolett till nära infrarött, som hittats i solkoronans ljus, hade föreslagits komma från ett okänt grundämne som döptes till koronium. Det skall noteras att circa 70 år tidigare hade grundämnet helium identifierats i solljus under en solförmörkelse. I ett föredömligt kort papper i Arkiv för Matematik, Astronomi och Fysik kunde Edlén dock påvisa teoretiskt att koroniumlinjerna istället hade skapats av kraftigt joniserade atomer av järn, kalcium och nickel.

Edlén utvecklade sedan dessa idéer i en längre artikel i Zeitschrift für Astrophysik 1943. Linjer från upp till fjorton gånger joniserat järn hade identifierats. Dessa linjer var ett starkt argument för att temperaturen i koronaplasmat låg på flera miljoner grader, vilket var mycket förvånande, men det hade faktiskt funnits indikationer på detta under en tid. Den samtida fysikern Hannes Alfvén publicerade en i detta avseende viktig artikel, också den i Arkiv för Matematik, Astronomi och Fysik, den 26 februari 1941, det vill säga två veckor före Edléns artikel. I den går Alfvén igenom argument för att koronatemperaturen är mycket hög. Ett av argumenten han, med hänvisning till ”private communications”, framför är Edléns identifikation av koronalinjerna med förbjudna övergångar i kraftigt joniserade atomer. Dessa linjer passar också väl in i Alfvéns framlagda teori för koronan i denna artikel. Man kan nog säga att Edléns identifikation av koronalinjerna var ett avgörande bevis för de höga temperaturerna i koronan.

Ur Bengt Edlén “Om solkoronans spektrum och identifieringen av koronalinjerna”, Populär Astronomisk Tidskrift, vol. 22, 1941.

För denna upptäckt erhöll Bengt Edlén Arrhenius-medaljen i guld
1944, Royal Astronomical Societys guldmedalj 1945 och Henry Draper-medaljen 1968. Bengt Edlén brukade svara på frågan om han tyckte att han borde ha fått Nobelpriset, med att det var bättre att folk frågade varför han inte hade fått det än varför han hade fått det.

Bengt Edlén vid sitt skrivbord på Fysicum i Lund med ett porträtt av spektroskopisten Janne Rydberg på väggen. Foto: Fysiska institutionen, Lunds universitet.

Jag hade förmånen att tillsammans med min familj få besöka Bengt Edlén och hans fru Friedel Edlén på deras sommarställe utanför Örkelljunga på de nordöstra sluttningarna av Hallandsåsen. Vid dessa sammankomster kom också Carl Schalén med familj. Schalén var astronomiprofessor i Lund under samma tid som Edlén och var stjärnspektroskopist.

Edléns sommarställe var ett gammalt hus med lågt i tak och utan mycket ljusinsläpp som låg vid gamla Riksettan, alltså det uråldriga huvudstråket från Skåne till Stockholm. Det var dock bara en grusväg eftersom riksvägen hade dragits om många år tidigare. Det var på denna gamla Riksetta som Magnus Stenbocks kurir red på väg upp till Stockholms slott med bud om segern vid slaget i Helsingborg 1710, då Skåne förblev svenskt. Nu stod Edléns fina vita Peugeot 404 parkerad längs grusvägen.

Friedel Edlén brukade bjuda på kotunga vid dessa sommarbesök, vilket inte vi barn uppskattade. Det var dock alltid lika trevligt att höra lundaprofessorerna på sommarstället diskutera spektroskopi, som ju var en gammal svensk paradgren, och fortfarande är så på många sätt. Edlén brukade varje år berätta över kaffet, med sin pipa i mungipan, om hjortronen som faktiskt växte i myren nedanför huset.

Bengt Edlén dog i februari 1993 i Lund och ligger begravd på Östra kyrkogården söder om Botaniska trädgården i Lund med sin fru Friedel. Även Carl Schalén ligger begravd i närheten, död samma år som Bengt Edlén, två år före Hannes Alfvén.