Av Lennart Lindegren
I början av 1970-talet, när jag läste mina första astronomikurser vid Lunds universitet, fanns det intill föreläsningssalen i den gamla observatoriebyggnaden ett praktfullt mässingsinstrument som ibland förevisades för studenter och besökare. Det var en meridiancirkel, tillverkad 1873 av A. Repsold & Söhne i Hamburg. Trots att instrumentet vid det laget var högst omodernt och inte hade använts på åtskilliga år, var det något i dess specifika och ändamålsenliga konstruktion som fascinerade mig. En meridiancirkel är en astronomisk kikare, konstruerad för ett enda syfte: att mäta stjärnors och planeters positioner med största möjliga noggrannhet. Alla delar var noga uttänkta för detta ändamål. På 1800-talet fanns meridiancirklar vid alla astronomiska observatorier av någon betydelse, så även i Uppsala och Stockholm, men den i Lund var på sin tid den modernaste i Sverige.
Fram till 1940-talet genomfördes vid observatoriet flera mycket ambitiösa observationsprogram, bland annat för den stora internationella stjärnkatalogen Astronomische Gesellschaft Katalog (AGK). Observationerna gjordes visuellt, med observatören halvliggande under kikartuben medan assistenten avläste cirkelinställningarna. Den omständliga proceduren ansågs redan på 1920-talet vara otidsenlig och tämligen irrelevant för den snabbt framväxande astrofysikens behov. Nu var det större teleskop och fotografiska metoder som gällde, och när Stockholms observatorium flyttade till Saltsjöbaden 1931 fick den gamla meridiancirkeln stå kvar på Observatoriekullen. Även i Uppsala användes den fotografiska tekniken tidigt och med stor framgång (mer om detta nedan).
Noggrann bestämning av stjärnpositioner tillhör en specialitet inom astronomin som kallas astrometri – stjärnmätning. Häri ingår även differentiella mätningar, exempelvis av komponenterna i en dubbelstjärna, eller av de mycket små förändringar i en stjärnas position som orsakas av dess rörelse i förhållande till solen (egenrörelse) och jordens årliga omlopp kring solen (parallax). Den senare effekten är speciellt intressant eftersom den ger direkt information om avståndet: ju större parallax, desto närmare oss befinner sig stjärnan. De enorma avstånden i stjärnrymden medför att både parallaxer och egenrörelser är extremt små och svåra att mäta. En vanlig enhet för dessa små vinklar är 1 millibågsekund (milli-arcsec eller mas) = 0,001 bågsekund (arcsec). Ett knappnålshuvud (1 mm) betraktad på 200 km avstånd upptar en vinkel på ungefär 1 mas. Den närmaste stjärnan, Proxima Centauri, har en parallax på 769 mas, men för de flesta av Vintergatans stjärnor är parallaxen betydligt mindre än 1 mas.
En meridiancirkel kunde sällan ge bättre noggrannhet än ett par hundra mas, vilket alltså knappt räckte för avståndsbestämning ens till solens närmaste grannar i stjärnrymden. Med fotografins hjälp fick man betydligt bättre noggrannhet, och i början av 1900-talet var Östen Bergstrand i Uppsala en av pionjärerna för den nya tekniken. Med hjälp av dubbelrefraktorn från 1893 mätte han bland annat parallaxen för 61 Cygni, och fick ett värde som ligger anmärkningsvärt nära dagens bästa uppskattningar (se tabell). Denna dubbelstjärna i Svanens stjärnbild, nätt och jämnt synlig för blotta ögat, är speciell i astrometrins historia: baserat på Bessels mödosamma visuella observationer från 1837-38 publicerades den första tillförlitliga parallaxbestämningen för just denna stjärna. Trots att proceduren rationaliserades genom fotografin förblev parallaxarbetet ytterligt besvärligt och tidskrävande, vilket avspeglades i den långsamma tillväxten av antalet kända parallaxer. För hundra år sedan kunde man räkna till något dussin parallaxavstånd med en relativ osäkerhet mindre än 20 %, och så sent som 1995 uppgick de till knappt två tusen.
1974 var det dags för mig att välja inriktning för mitt doktorsarbete. Vad var det som fick mig att välja astrometrin – en obetydlig, till synes utsiktslös specialitet långt från den moderna forskningens huvudfåra? Kanske var det bara okunnighet, men jag vill gärna tro att det var fascinationen inför ett gammalt mässingsinstrument som ledde mig in på denna bana. Det var i vart fall inte fråga om framsynthet, för ingen kunde då ana den explosiva utveckling som astrometrin stod inför, i synergi med rymdteknologin, digitala kameror och datorer. En utveckling som började med uppskjutningen av Hipparcos-satelliten 1989 och accelererade med Gaia ett kvartssekel senare. En explosion som för övrigt fortfarande pågår: just nu ligger antalet tillförlitliga parallaxavstånd, med < 20% relativfel, runt 148 miljoner…